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Abstract

Propagation of signals across the cerebral cortex is a core component of many cognitive processes and is
generally thought to be mediated by direct intracortical connectivity. The thalamus, by contrast, is considered
to be devoid of internal connections and organized as a collection of parallel inputs to the cortex. Here, we
provide evidence that “open-loop” intrathalamic pathways involving the thalamic reticular nucleus (TRN) can
support propagation of oscillatory activity across the cortex. Recent studies support the existence of open-
loop thalamo-reticulo-thalamic (TC-TRN-TC) synaptic motifs in addition to traditional closed-loop architec-
tures. We hypothesized that open-loop structural modules, when connected in series, might underlie thalamic
and, therefore cortical, signal propagation. Using a supercomputing platform to simulate thousands of permu-
tations of a thalamocortical network based on physiological data collected in mice, rats, ferrets, and cats and
in which select synapses were allowed to vary both by class and individually, we evaluated the relative capaci-
ties of closed-loop and open-loop TC-TRN-TC synaptic configurations to support both propagation and oscil-
lation. We observed that (1) signal propagation was best supported in networks possessing strong open-loop
TC-TRN-TC connectivity; (2) intrareticular synapses were neither primary substrates of propagation nor oscilla-
tion; and (3) heterogeneous synaptic networks supported more robust propagation of oscillation than their ho-
mogeneous counterparts. These findings suggest that open-loop, heterogeneous intrathalamic architectures
might complement direct intracortical connectivity to facilitate cortical signal propagation.

Key words: computational model; cortical signaling; intrathalamic signaling; open-loop; propagation; thalamic re-
ticular nucleus

Significance Statement

Interactions between the dorsal thalamus and thalamic reticular nucleus (TRN) are speculated to contribute
to phenomena such as arousal, attention, sleep, and seizures. Despite the importance of the TRN, the syn-
aptic microarchitectures forming the basis for dorsal thalamus-TRN interactions are not fully understood.
The computational neural model we present incorporates “open-loop” thalamo-reticular-thalamic (TC-TRN-
TC) synaptic motifs, which have been experimentally observed. We elucidate how open-loop motifs pos-
sess the capacity to shape the propagative properties of signals intrinsic to the thalamus and evaluate the
wave dynamics they support relative to closed-loop TC-TRN-TC pathways and intrareticular synaptic con-
nections. Our model also generates predictions regarding how different spatial distributions of reticulo-tha-
lamic and intrareticular synapses affect these signaling properties.
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Introduction
Propagation of activity across the cerebral cortex is

thought to underlie multiple cognitive processes, as well
as pathologic processes such as epilepsy and migraine
(Leao, 1944; Muller et al., 2014, 2016; Kokkinos et al.,
2017). Cortical regions are highly interconnected via di-
rect axonal projections as well as via polysynaptic path-
ways involving the basal ganglia and thalamus (Parent
and Hazrati, 1995; Theyel et al., 2010). Cortical signal
propagation is generally thought to be mediated via direct
cortical connections (Felleman and Van Essen, 1991;
Kötter and Sommer, 2000), but recent evidence suggests
that the thalamus serves as a control point to modify corti-
cal activity during cognitive processes such as attentional
shifting (Wimmer et al., 2015). An advantage of a thalamic
mode of signal propagation is the efficiency by which
modulatory influences may control thalamic, and there-
fore cortical, propagation. The thalamus, however, is gen-
erally thought to have limited internal connectivity and
therefore limited capacity to serve as a substrate for sig-
nal propagation.
A major intermediary allowing for communication be-

tween thalamocortical neurons, the thalamic reticular nu-
cleus (TRN), is a sheet of GABAergic neurons that partially
envelops the dorsal thalamus (Pinault, 2004). It has been
speculated to participate in phenomena ranging from selec-
tive attention (Crick, 1984; Guillery et al., 1998; McAlonan et
al., 2006) to sleep and arousal (Llinás and Paré, 1991,
Steriade et al., 1993; Guillery et al., 1998; McAlonan et al.,
2006) and fear responses (Dong et al., 2019), and may play
a role in generating absence seizures (von Krosigk et al.,
1993; Bal et al., 1995; Destexhe et al., 1996a; Huguenard,
1998; McCormick and Contreras, 2001), symptoms of neu-
rodevelopmental disorders (Wells et al., 2016; Krol et al.,
2018), and schizophrenia (Ferrarelli and Tononi, 2011). The

TRN projects exclusively to thalamic relay (thalamocortical,
or TC) neurons, while receiving reciprocal, glutamatergic
thalamoreticular (TC-TRN) connections (Sherman and
Guillery, 2001).
The structural microarchitecture of bidirectional path-

ways connecting the dorsal thalamus and TRN has been
the subject of ongoing debate. It was originally assumed
that thalamo-reticulo-thalamic (TC-TRN-TC) pathways
were reciprocal, forming “closed loops” of recurrent inhi-
bition delivered to TC neurons (Fig. 1A, left; Hale et al.,
1982; Steriade et al., 1993; Warren et al., 1994; Sherman
and Guillery, 1996; Pinault, 2004). While closed disynaptic
loops have indeed been confirmed, they were only identi-
fied in a minority of examined TC-TRN pairs (Shosaku,
1986; Lo and Sherman, 1994; Pinault and Deschênes,
1998; FitzGibbon et al., 2000; Gentet and Ulrich, 2003;
Pinault, 2004). Another connectional scheme between the
dorsal thalamus and TRN is the so-called “open-loop”
TC-TRN-TC pathway, wherein a TC neuron is not recipro-
cally inhibited by the TRN neuron it excites (Fig. 1A, right).
Open-loop configurations have been inferred from re-
cordings in rodent thalamic slice preparations (Crabtree
et al., 1998; Crabtree and Isaac, 2002; Lam and Sherman,
2005, 2015; Lee et al., 2010) and confirmed in anatomic
studies (Pinault and Deschênes, 1998; Kimura et al.,
2007; Kimura, 2014). Furthermore, open-loop pathway
variants in the form of X-TRN-TC are also known to exist,
with X representing indirect sources of modulation to the
sensory thalamus via the TRN, including monoaminergic
and cholinergic brainstem nuclei, GABAergic nuclei of
the basal forebrain, the amygdala, and prefrontal cortex
(Morrison and Foote, 1986; Hallanger et al., 1987; Asanuma
and Porter, 1990; Bickford et al., 1994; Zikopoulos and
Barbas, 2006; Sun et al., 2013; Pita-Almenar et al., 2014;
Wimmer et al., 2015).
Based on previous studies of open-loop TC-TRN-TC

synaptic organization, we hypothesized that open-loop
synaptic modules might underlie intrathalamic and there-
fore intracortical signal propagation. Accordingly, we sys-
tematically examined thousands of permutations of a
novel network model comprising thalamic, reticular, and
thalamorecipient, layer-4 cortical (Co) neurons to evaluate
the efficacy of known thalamic synaptic motifs (open-loop
pathways, closed-loop pathways, and chemical and elec-
trical intrareticular synapses), in isolation and in combina-
tion, in mediating signal transmission across the thalamus
and cortex.

Materials and Methods
Network architecture and simulations
We constructed a baseline model network based on

Willis et al. (2015) by connecting in series three thalamo-
cortical pathways, each consisting of a TC, TRN, and
layer-4 Co neuron (for a three-by-three neuron network);
the physiological data used in our model were collected in
mice, rats, ferrets, and cats of both sexes. Permutations of
the baseline network potentially featured both closed-loop
and/or open-loop TC-TRN-TCmotifs, with the latter consti-
tuting one mode of connectivity between parallel
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thalamocortical pathways. Intrareticular synapses repre-
sented the other connections between pathways, based
on the identification of both GABAergic (Ahlsén and
Lindström, 1982; Steriade et al., 1990; Cox et al., 1996;
Sanchez-Vives et al., 1997; Shu and McCormick, 2002;
Deleuze and Huguenard, 2006; Lam et al., 2006) and elec-
trical synapses (Landisman et al., 2002; Fuentealba et al.,
2004; Long et al., 2004; Deleuze and Huguenard, 2006;
Lam et al., 2006) between TRN neurons. Thus, we in-
cluded three different polysynaptic configurations be-
tween thalamocortical pathways in our network (Fig. 1B,
from left to right): (1) those with a GABAergic intrareticular
synapse (TRN-TRNGABA), (2) those with an electrical intrare-
ticular synapse (TRN-TRNElec), and (3) open-loop TC-TRN-
TC pathways. Thalamic, reticular, and cortical cell layers
were aligned topographically, such that TC1 projected to
both TRN1 and Co1 (Jones, 1975; Steriade et al., 1993;
Destexhe et al., 1998; Sohal et al., 2000; Sherman and
Guillery, 2001). The divergence of thalamic and reticular syn-
apses in the model was constrained to accommodate
open-loop TC-TRN-TC architectures, which depend on a
lack of recurrent feedback to the downstream TC neuron, in

a subset of the simulated network variants: to this end,
every TC neuron projected to exactly one TRN neuron, while
single TRN neurons could project to either one TC neuron
(whether recurrently or laterally), as in the case of entirely
closed-loop or open-looped TC-TRN-TC motifs, or two TC
neurons (one recurrently and one laterally), if participating in
a pathway expressing some intermediate degree of open-
ness (Fig. 1C).
To analyze how each variety of interpathway connec-

tion contributed to network dynamics, permutations of
the baseline network were generated by varying three
synaptic properties associated with each of the interpath-
way synaptic motifs; moreover, these parameters were ei-
ther varied in a homogeneous or heterogeneous manner.
In the case of homogeneously varied synaptic network
permutations, the synaptic parameters associated with
three interpathway motifs varied uniformly as a class, with
all external, TC-TRN, and thalamocortical (TC-Co) synap-
tic conductances held constant: (1) TRN-TRNGABA synap-
ses ranged in conductance between 0 and 450 nS, (2)
TRN-TRNElec synapses ranged in coupling coefficient be-
tween 0 and 0.36, and (3) a TC-TRN-TC “openness”

Figure 1. Pathways and properties of thalamocortical signaling. A, Closed-loop versus open-loop TC-TRN-TC configurations. B,
Three possible pathways through which a signal might propagate from one TC neuron to another via the TRN. C, Baseline thalamo-
cortical model network. Broken-line synapses were allowed to vary either as a class (homogeneously) or independently of one an-
other (heterogeneously). The black arrow corresponds to the fixed, external stimulus applied to TC1. D, Sample cortical spike
histograms (detrended) in a network permutation responding to a fixed, sustained stimulus delivered to TC1 (black bar beneath the lowest
trace). The propagation score assigned to any network permutation was quantified as the amplitude of the initial stimulus-evoked re-
sponse in the detrended Co3 histogram; response propagation across the cortical subnetwork (orange arrow) was consistently linear,
and thus the initial response in Co3 was observed at a fixed interval relative to the onset of stimulation. Oscillation intrinsic to any network
variant was quantified as the amplitude of the first off-center peak in the normalized autocorrelogram (right) of poststimulation activity in
the detrended Co3 histogram (within the broken black box). The initial 400ms of activity preceding the fixed stimulus (in gray) is shown
here for each histogram but was not included in the calculations of either propagation or oscillation. Note that the bin heights in the Co1
histogram shown here were truncated in order to maintain identical vertical scaling across all three cortical histograms.
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coefficient, defined as the weight distribution of lateral
versus recurrent reticulothalamic (TRN-TC) connectivity,
varied between 0 (completely closed-loop) and 1.0 (com-
pletely open-loop) and with a baseline TRN-TC conduct-
ance of 80 nS. Thus, for a network variant possessing an
openness coefficient of 0.4 (i.e., exhibiting slightly more
closed-loop than open-loop TC-TRN-TC connectivity),
the laterally inhibitory TRN-TC synapses in the network,
TRN1!TC2 and TRN2!TC3, would carry a conductance
of 32 nS (0.4 � 80 nS), while the recurrent TRN-TC synap-
ses, TRN1!TC1, TRN2!TC2, and TRN3!TC3, would ex-
hibit a conductance of 48 nS (0.6 � 80 nS). For the
heterogeneously varied synaptic network variants, all
TRN-TRN and TRN-TC synapses were allowed to vary in-
dependently. Domains for each of the synaptic variables
were selected to include the range of conductance or
coupling strengths reported in physiological measure-
ments and/or used in similar neural models (Destexhe et
al., 1996a, 1998; Sohal and Huguenard, 1998; Sohal et
al., 2000; Landisman et al., 2002; Long et al., 2004; Traub
et al., 2005).
Ongoing afferent synaptic input was delivered to every

TC neuron in the model as Poisson-modulated spike trains
centered at 40Hz. An additional 200-Hz pulse train was ap-
plied to neuron TC1 between t=0.400 s and t=1.500 s dur-
ing every network simulation run. This high-frequency
stimulus was modeled on those used to elicit spindle-like
waves in a ferret thalamoreticular slice preparation (Bal et
al., 1995; Kim et al., 1995). A given network’s output was
compiled by assembling spike histograms (10-ms bins)
averaging 1000 simulations for every cortical neuron (Fig.
1D). We quantified network dynamics as a function of vari-
able TC-TRN-TC and intrareticular synaptic architectures
by defining and measuring two properties inherent to stim-
ulus-evoked responses in each network variant: propaga-
tion and oscillation, with the latter included in light of the
fact that many characterized thalamic waveforms both os-
cillate and propagate through the thalamus and cortex
(Sherman and Guillery, 2001). Network properties were
quantified in the most downstream element of the cortical
output layer, Co3. Propagation across a network was quan-
tified as the amplitude of the initial stimulus-evoked re-
sponse in the detrended Co3 histogram. The degree of
oscillation supported by each network permutation was
defined as the amplitude of the first off-center peak in the
normalized autocorrelogram of poststimulation activity
(Fig. 1D). Both propagation and oscillation scores are re-
ported as normalized to the maximum scores tabulated for
each property. Given the high prevalence of propagating
oscillatory waves in the cerebral cortex (for review, see
Muller et al., 2018), we furthermore defined a composite
“optimization” (Op) metric to measure the capacity of net-
works to simultaneously support and balance between
propagation (Pr) and oscillation (Os):

Op ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pr21Os2

p
� jPr �Osj: (1)

Intrinsic neuronal models
Single-compartment TC, TRN, and cortical model neu-

rons obeyed Hodgkin–Huxley kinetics, with membrane

potentials V varying according to the first-order differen-
tial equation:

C
dV
dt

¼ �gL V � ELð Þ �
X

i

gi Vð Þ V � Eið Þ; (2)

where C is the membrane capacitance, gL and EL are the
leakage conductance and reversal potential, respectively,
and gi(V) and Ei are the dynamic conductance and rever-
sal potential, respectively, of the ith voltage-gated, ligand-
gated (chemical synaptic), or electrical synaptic conduct-
ance (for electrical synaptic conductances, the effective
reversal potential is equal to the presynaptic membrane
potential; see Eq. 3a). All three varieties of model neurons
expressed both the standard transient sodium (INa) and
delayed-rectifier potassium (IK) currents. TC and TRN
neurons additionally included a T-type calcium conduct-
ance (T-current; IT) and hyperpolarization-activated cation
current (H-current; IH), following the TC model of Deleuze
et al. (2012). Both TRN and layer-4 Co cells expressed a
slow, non-inactivating potassium conductance (IM), fol-
lowing the modeling of Pospischil et al. (2008), which ac-
counts for the spike-frequency adaptation previously
reported in physiological recordings from these neurons
(Yamada et al., 1989; Willis et al., 2015). A list of intrinsic
model cell parameters, including current conductances,
reversal potentials, selected gating kinetics, and mem-
brane capacitance, can be found in Table 1.

Synaptic models
The kinetics of chemical synapses in our model network

conformed to the synaptic depression model of Tsodyks
and Markram (1997). This model presupposes a finite
quantity of “resources,” akin to synaptic vesicles, capable
of being released by the presynaptic neuron; these re-
sources can exist in an active, inactive, or recovered
state. A parameter USE characterizes the fraction of re-
covered resources that can be converted to an active
state (i.e., for release by the presynaptic neuron) following
action potential induction in the presynaptic axon
terminal (s). Following resource activation, synapses inac-
tivate according to the time constant t inact; resources be-
come available again for activation after a recovery period
described by the time constant t recov. These parameters,
along with the neurotransmitters, postsynaptic conduc-
tances, and reversal potentials characterizing all of the
chemical synapses in our model, are given in Table 2.
Glutamatergic TC-TRN and TC-Co and baseline

GABAergic TRN-TC synaptic parameters matched those
of Willis et al. (2015), with the latter synapses allowed to
vary in conductance as described above. TRN-TC signal-
ing was mediated exclusively through GABAA receptors,
mirroring other thalamic and thalamocortical models in
which the slower TRN-TC GABAB conductance was omit-
ted (Traub et al., 2005; Rogala et al., 2013; Pham and
Haas, 2018). Although evidence has been presented chal-
lenging the existence of GABAergic intrareticular synap-
ses in certain mammalian species and age groups (Pinault
et al., 1997; Landisman et al., 2002; Pinault, 2004;
Cruikshank et al., 2010; Hou et al., 2016), our model
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avoided making assumptions regarding their presence,
strength, or spatial distribution by allowing the associated
synaptic conductances to vary over a range of physiologi-
cal values, including zero, and in distribution. The reversal
potential, conductance, and kinetics of the external syn-
apses projecting to the TC neurons were directly based
on retinogeniculate synapses (Chen and Regehr, 2003),
although the generic nature of the external inputs in our
model allows them to represent not only immediately up-
stream sensory input but also brainstem modulation (e.g.,
serotonergic, adrenergic) known to act on thalamic nuclei
(Siegel and Sapru, 2015).
Electrical synapses between TRN neurons were based

on the Cx36-dependent intrareticular gap junctions first
identified by Landisman et al. (2002). For TRN neurons,
the sum of electrical synaptic currents (IElec) entering any
postsynaptic neuron j from presynaptic neuron(s) i was in-
cluded in the rightmost term from Equation 2 and calcu-
lated as

IElec jð Þ ¼
X

i

gij Vj � Við Þ; (3a)

where gij, the gap junction conductance, was itself calcu-
lated as

gij ¼ DðxÞ gj

1=CC� 1
; (3b)

where CC was the electrical coupling coefficient between
TRN neurons i and j, gj was the membrane conductance
of the postsynaptic neuron, and D(x) was a scaling factor
that depended on the physical distance between the
coupled TRN neurons (Dayan and Abbott, 2005; Shimizu
and Stopfer, 2013). Although the individual gap junctions
comprising TRN-TRNElec synapses used in the model
were not explicitly coded for, differences in TRN-TRN
coupling between different electrical synapses and net-
work permutations implicitly reflected differing gap junc-
tion densities, following Traub et al. (2005). TRN-TRNElec

synapses were symmetrical (non-rectifying), such that
gij=gji.
We extrapolated the attenuation of intrareticular synap-

tic strength as a function of intracellular distance based
on mappings of intrinsic connections within the TRN
along a horizontal (anteroposterior) plane assembled by
Deleuze and Huguenard (2006). Assuming (1) an intracel-
lular distance of 50 mm between adjacent TRN neurons,
(2) a distance x (in multiples of 50mm) between non-adja-
cent neurons, and (3) a Gaussian falloff in synaptic
strength (Sohal et al., 2000), the baseline (adjacent-neu-
ron) conductances of TRN-TRNGABA and TRN-TRNElec

Table 1: Intrinsic model cellular parameters

Intrinsic model cellular parameters
Parameter TC cell TRN cell Co cell

Leak conductance, gL (nS) 3.263 3.7928 4.8128
Leak reversal potential, EL (mV) –60.03 –57 –60.2354
Transient sodium conductance, gNa (nS) 1500 3000 3000
Sodium equilibrium potential, ENa (mV) 50 50 50
Delayed-rectifier potassium conductance, gK (nS) 520 400 140
M-type potassium conductance, gM (nS) - 3.5 1.5
M-type potassium time constant, tM (ms) - 200 180
Potassium equilibrium potential, EK (mV) –100 –100 –90
T-type calcium conductance, gT (nS) 45 21 -
Calcium equilibrium potential, ET (mV) 120 120 120
H-current conductance, gH (nS) 0.608 0.0192 -
H-current reversal potential, EH (mV) –33 –33 -
Membrane capacitance, Cm (pF) 100.4 75.0 109.3865

Table 2: Model synaptic parameters

Model synaptic parameters
Synapse Neurotransmitter Conductance (nS) t recov (ms) t inact (ms) Reversal potential (mV) USE

External synapse to TC cell (Glutamate) 32 125 2.64 0 0.76
TC-to-TRN cell synapse
(TC-TRN)

Glutamate 150 500 2.64 0 0.76

TC-to-Co cell synapse
(TC-Co)

Glutamate 50 160 11.52 0 0.8113

TRN-to-TC cell synapse
(TRN-TC)

GABAA Variable
(0–80)

167.29 16.62 –80 0.62

Chemical TRN-to-TRN
cell synapse
(TRN-TRNGABA)

GABAA Variable
(0–450)

225 15 –75 0.62

srecov, synaptic recovery time constant; sinact, synaptic recovery time constant; USE, fraction of recovered resources (synaptic vesicles) that can be converted to
an active state (Tsodyks and Markram, 1997).
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synapses were scaled for non-adjacent synapses using
the function

D xð Þ ¼ e� x2

2l 2 ; (4)

where lGABA = 531 mm and lElec = 130 mm.
Given the small spatial scale of our model, synaptic de-

lays associated with finite axonal conductance times
within the TRN and between the TRN and dorsal thalamus
were disregarded, mirroring the simplification incorpo-
rated into previous thalamic and thalamocortical models
simulating synaptic interactions on the order of 100 mm
(Golomb et al., 1996; Traub et al., 2005). Although small
(;1ms) thalamocortical delays were inserted into the net-
work model of Traub et al. (2005), these were likewise
omitted on the basis of the cortex functioning solely as an
output layer in our model.

Quantification and statistical analysis
Our model was coded, simulated, and analyzed in

MATLAB R2018b (MathWorks) using both a Dell Inspiron
3847 and Hewlett-Packard Z840 running Windows 10 and
nodes on the Illinois Campus Cluster (National Center for
Supercomputing Applications, University of Illinois at
Urbana-Champaign). Simulations, of which there were
1000 for every network permutation, employed 0.1-ms
time steps, with temporal integration based on the hybrid
analytic-numeral integration method of Moore and Ramon
(1974), which optimizes between accurate solutions to
Hodgkin–Huxley and synaptic models and computational
efficiency. All simulations commenced with a 200-ms
equilibration period, during which no external stimulation
was delivered to TC neurons; this allowed all network
elements to attain steady-state conditions. The number
of homogeneously and heterogeneously varied synaptic
network variants generated were 770 and 12,681,
respectively.
Statistical analysis was performed in both MATLAB and

R (R Core Team, 2013), with the glmnet package
(Friedman et al., 2010) used within the latter platform to
perform regression analyses. Multiple linear regression
was employed to establish rudimentary relationships be-
tween synaptic classes (homogeneously synaptic net-
works) or individual synapses (heterogeneously synaptic
networks) and each of the two studied network proper-
ties, even in instances where these relationships deviated
from linearity. Second-order polynomial (2°) regression
models with interaction terms elucidated how synaptic
interactions and nonlinearities affected these network
properties. Regressions were optimized using elastic net
regularization, with the specific regularization hyperpara-
meter a selected to minimize each regression model’s
root-mean-square error (RMSE). To convey the relative
influence of different synaptic classes or individual syn-
apses on dynamic network properties, all regression
coefficients are reported here as normalized to the coef-
ficient with the largest absolute value; the effects corre-
sponding to normalized regression coefficients (NRCs)
with absolute values of,0.05 were disregarded as negli-
gibly influential on network dynamics. Both unpaired

Student’s t tests and one-way analysis of variance mod-
els were used to compare the mean property scores be-
tween different sets of networks, with Tukey’s honestly
significant difference tests used to ascertain pairwise dif-
ference between groups in the latter; standard errors of
the mean (SEMs) were used as a measure of variance,
and null hypotheses were rejected at probability values
(p values) below 0.05. Kolmogorov–Smirnov and Levene’s
tests were employed to confirm normality and homogene-
ity of variance, respectively, when using parametric mean-
comparison tests; data were transformed as needed to
conform to these prerequisites.

Code accessibility
The code/software described in the paper is freely

available online at https://github.com/JeffreyWBrown/
Open-loop-TC-TRN-TC. The code is available as Extended
Data 1.

Results
Propagation and oscillation in homogeneously varied
synaptic models
Stimulus-evoked responses propagated linearly across

the length of homogeneous synaptic networks, occurring
at average fixed intervals of 93.31 6 0.35ms (mean 6
SEM; range, 60–110ms) between adjacent thalamocorti-
cal pathways, across all model permutations and with a
mean velocity of 0.54 mm/s, assuming a 50-mm separa-
tion between adjacent neurons in each network layer. All
770 homogeneous network variants were ranked accord-
ing to their cortical propagation scores (Fig. 2A, top). TC
neurons exhibited both tonic firing and bursting activity,
with the former mode more frequently observed (Fig. 2B).
Multiple linear regression analysis (R2 = 0.793, RMSE=

0.047, p, 0.0001) demonstrated a strong positive corre-
lation between the TC-TRN-TC openness coefficient and
propagation score (NRC=1.000). By contrast, chemical
and electrical TRN-TRN synaptic connectivity tended
to modestly diminish propagation (NRC = �0.173 and
NRC = �0.136, respectively; Table 3). Further, other exci-
tatory connectivity, such as corticocortical or corticotha-
lamic connectivity, often postulated as being important
for cortical signal propagation (Felleman and Van Essen,
1991; Kötter and Sommer, 2000; Theyel et al., 2010), was
not necessary. Thus, the homogeneously varied synaptic
network permutations that best accommodated signal
propagation were generally ones with weak or absent
synapses between TRN neurons and strong open-loop
TC-TRN-TC connections. For example, Network a, which
epitomizes this architecture, exhibited robust signal prop-
agation in response to a fixed stimulus delivered to TC1; a
representative simulation of this network is shown in
Figure 2B, left, and its position within the parameter
space depicted in the left-sided heat map of Figure 2C is
labeled. Stimulus-evoked activity in this network tended
to propagate efficiently from Co1 to Co3: near-synchro-
nous propagation cascades were elicited in both the TRN
and cortical layers of the model, having been stimulated
by propagating activity in upstream TC neurons. Smooth,
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Figure 2. Propagation and oscillation in homogeneously varied synaptic networks (N=770). A, Ordinal heat maps ranking homoge-
neously varied synaptic network permutations according to the extent of supported signal propagation and oscillation. Every row in
a given map depicts a single network permutation, color-coded based on its synaptic makeup according to the three synaptic
scales found below the maps (redder colors signify stronger or more open-loop connections). The network property ranks and syn-
aptic makeups of two selected networks, Networks a and b , are indicated. B, Representative simulations and circuit diagrams de-
picting the normalized synaptic makeups for the two selected networks. The black bar indicates when the fixed stimulus was
delivered to TC1 in each simulation. Orange highlighting indicates epochs of linear propagation, while circles are placed above
spikes occurring during periods of oscillatory activity. C, Heat maps displaying propagation scores in TRN-TRN synaptic parameter
space for the 70 fully open-loop networks (openness coefficient = 1.0), with Network a highlighted (left), and propagation as a func-
tion of TC-TRN-TC openness and electrical coupling between TRN neurons for the 70 networks possessing 200-nS GABAergic
TRN-TRN synapses (right). D, Mean oscillation scores for networks varied nonlinearly as a function of their openness coefficients,
with networks possessing openness coefficients of 0 and 0.4 supporting oscillation to equal extents (one-way analysis of variance
with Tukey post hoc tests, F(10,759) = 137.8, p, 0.0001). Individual means were computed by averaging the 70 oscillation scores as-
sociated with a given openness coefficients, and error bars indicate SEM; N.S. = not significant.

Table 3. Normalized linear and 2° regression coefficients for propagation and oscillation in homogeneously varied synaptic
networks

Normalized regression coefficients for homogeneously varied synaptic networks
Synaptic variable Propagation linear Propagation 2° Oscillation linear Oscillation 2°

TRN-TRNGABA –0.173 –0.670 - 0.060
TRN-TRNElec –0.136 –0.347 - -
OpenTC-TRN-TC 1.000 1.000 –1.000 –0.052
(TRN-TRNGABA)

2 - 0.332 - -
(TRN-TRNElec)

2 - 0.164 - -
(OpenTC-TRN-TC)

2 - 0.594 - –1.000
TRN-TRNGABA � TRN-TRNElec - 0.262 - -
TRN-TRNGABA � OpenTC-TRN-TC - –0.152 - -
TRN-TRNElec � OpenTC-TRN-TC - –0.365 - -

The regressions include 1°, 2°, and interaction terms corresponding to TRN-TRNGABA, TRN-TRNElec, and TC-TRN-TC openness (OpenTC-TRN-TC). Terms associ-
ated with regression coefficients of absolute values,0.05 are omitted. Linear regression for propagation, R2 = 0.793, RMSE=0.047, p,0.0001; 2° regression
for propagation, R2 = 0.842, RMSE=0.041, p, 0.0001; linear regression for oscillation, R2 = 0.526, RMSE=0.145, p,0.0001; 2° regression for oscillation, R2 =
0.630, RMSE=0.128, p, 0.0001.
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linear propagation of action potentials across the network
depended on the synchronous induction of IPSPs and the
ensuing postinhibitory rebound spikes in TC neurons, as
mediated by T-type Ca21 channels and driven by inhibi-
tion from the TRN, which occurred reliably and at fixed in-
tervals in Network a. Relative to Network a, other network
permutations exhibiting stronger intrareticular synapses
did not support propagation as efficiently. We surmise
that TRN-TRNGABA synaptic connections reduced the in-
cidence of IPSPs in TC neurons required for signal propa-
gation across the network, while electrical coupling
between TRN neurons destructively shunted a propagat-
ing signal away from the thalamoreticular lattice through
which it predominantly traversed the network.
A 2° regression model of propagation as a function of

all three synaptic class variables (R2 = 0.842, RMSE=
0.041, p, 0.0001; Table 3) revealed a modestly negative
interaction term between TRN-TRNElec synapses and TC-
TRN-TC openness (NRC = �0.365), indicating that in net-
works where both electrical synapses were strong and
TC-TRN-TC openness high, the extent of supported prop-
agation diminished nonlinearly; a smaller negative interac-
tion between TRN-TRNGABA synapses and TC-TRN-TC
openness was also observed (NRC = �0.152). Together,
these terms suggested that propagation was more signifi-
cantly affected by connections in the TRN layer within the
more open-loop networks. This relationship was evident,
for example, in the right-sided heat map of Figure 2C, in
which propagation scores more markedly decreased with
increasing TRN-TRN electrical coupling as TC-TRN-TC
openness itself increased.
Oscillatory responses recurred in Co3 neurons at a

mean frequency of 9.07 6 0.2Hz (range, 7.14–12.50Hz)
across all homogeneous model permutations. Propaga-
tion and oscillation scores across all 770 homogeneous
networks were strongly anticorrelated (Pearson’s r =
�0.671, p, 0.0001). Accordingly, oscillation was best ac-
commodated in network permutations exhibiting strongly
closed-loop connectivity (Fig. 2A, bottom); however, the
capacity to support oscillation was neither markedly linear
nor monotonically decreasing as a function of increasing
openness coefficient (Fig. 2D). Rather, a one-way analysis
of variance with Tukey’s tests revealed that, on average,
oscillation scores peaked and remained statistically indis-
tinguishable from one another across the subset of net-
work permutations with openness coefficients between 0
and 0.4, with scores then decreasing in a roughly linear
fashion with increasing TC-TRN-TC openness (F(10,759) =
137.8, p, 0.0001); this result was consistent with a 2° re-
gression model of oscillation (R2 = 0.630, RMSE=0.128,
p, 0.0001; Table 3), in which the linear and quadratic
terms in TC-TRN-TC openness were associated with
NRCs of�1.000 and�0.052, respectively, and the effects
of TRN-TRNGABA (NRC=0.060) and TRN-TRNElec (NRC
regularized to 0) on oscillation were weakly positive and
negligible, respectively. Taken with the analysis of propa-
gation, these data suggest that networks with mixed
open- and closed-loop connectivity (which is likely
close to physiological reality) can support the coexis-
tence of oscillation and propagation (see below,

Propagation and oscillation in heterogeneously varied
synaptic models).
The predominant mechanism by which oscillation arose

in Co3 was through postinhibitory rebound in TC3, as en-
gendered by the strong recurrent inhibition found in
network permutations exhibiting primarily closed-loop
TC-TRN-TC connectivity. This mode of oscillation was
exemplified by Network b , a strongly closed-loop net-
work variant. In the simulation shown of this network (Fig.
2B, right), oscillatory activity was enabled by a single
epoch of signal propagation. Notably, neither the pres-
ence of strong GABAergic nor electrical intrareticular syn-
apses in Network b exerted much effect on its ability to
support oscillation, as predicted by the 2° regression model.

Propagation and oscillation in heterogeneously varied
synaptic models
Recent studies have highlighted heterogeneity in TRN

neuronal connectivity, synaptic physiology and chemical
identities (Lee et al., 2007; Halassa et al., 2014; Clemente-
Perez et al., 2017). We therefore examined the impact of
allowing all synaptic connections involving the TRN to be
independently varied. We constructed circuit-level sche-
matics of linear regression models for propagation (Fig.
3A, top) and oscillation (Fig. 3A, bottom) as functions of
the 14 synaptic variables in heterogeneous networks.
Propagation in heterogeneously varied synaptic net-

works increased chiefly as a function of increasing the
strength of the more downstream of the two laterally in-
hibitory TRN-TC synapses, TRN2!TC3: the correspond-
ing term in a linear regression model of propagation (R2 =
0.742, RMSE=0.069, p, 0.0001; Table 4) possessed an
NRC of 1.000 (Fig. 3A, top). Propagation scores also
scaled to a lesser extent with the more upstream laterally
inhibitory reticulothalamic synapse, TRN1!TC2 (NRC=
0.608). The two inhibitory intrareticular synapses origi-
nating at the rightmost end of the model network,
TRN3!TRN1 and TRN3!TRN2, both exerted a small
negative effect on propagation (NRC = �0.087 and
NRC = �0.084, respectively). Additionally, two TRN-
TRNElec synapses, TRN1=TRN2 and TRN1=TRN3 (where
the “=” denotes an electrical synapses), marginally de-
cremented propagation in heterogeneous networks,
with NRCs of �0.051 and �0.072, respectively. These
findings at an individual synaptic level comported with
the observation that strong TRN-TRN interactions,
whether chemical or electrical, tended to impede signal
propagation in homogeneous network variants.
A 2° regression model (R2 = 0.857, RMSE= 0.051,

p, 0.0001; Table 4) disclosed a large, propagation-en-
hancing interaction between the two laterally inhibitory
synapses (NRC=0.753), underscoring the same depend-
ence of propagation on strong open-loop TC-TRN-TC
connectivity as seen in homogeneously synaptic net-
works, but additionally demonstrating that propagation
scores increased nonlinearly as a function of simultaneously
increasing the weights of TRN1!TC2 and TRN2!TC3.
Interactions between TRN-TRN synapses of either vari-
ety and TRN-TC synapses tended diminish propagation,
as did those between recurrent and lateral inhibitory
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TRN-TC synapses. Taken together, the linear and 2° re-
gression models indicated that heterogeneous network
permutations with strong laterally inhibitory TRN-TC syn-
apses tended to best support propagation. Consistent re-
sponse propagation across the length of the network was
epitomized by Network a‘, in which TRN1!TC2 and
TRN2!TC3 were both relatively strong and those synapses
impeding propagation comparatively weak (Fig. 3B, left).

Heterogeneously varied synaptic architectures better
supported propagation of oscillation
In contrast to the homogeneous models, there was a

very small negative correlation between the propagation
and oscillation scores of heterogeneous networks (r =
�0.0296, p=0.0008), suggesting that propagation and
oscillation more easily coexist in heterogeneous than ho-
mogeneous models. This supposition was confirmed
through a 2° regression analysis (R2 = 0.388,
RMSE=0.118, p, 0.0001), which suggested that interac-
tions between recurrently and laterally inhibitory TRN-TC
synapses (NRCs ranging between 0.345 and 0.669) facili-
tated the propagation of oscillation, a mechanism typified
by Network b ‘ (Fig. 3B, right). Two intrareticular synap-
ses, TRN1-TRN3 and TRN1=TRN3, tended to contribute
modestly to oscillation (NRCs of 0.115 and 0.117, respec-
tively, in the linear regression model, R2 = 0.253,

RMSE=0.131, p, 0.0001; Fig. 3A, bottom), while, in their
individual capacities, TRN1!TC2 and TRN2!TC3 dimin-
ished oscillation (NRCs of �1.000 and �0.892,
respectively).
We analyzed the relative capacities of homogene-

ously and heterogeneously varied synaptic networks to
support propagation, oscillation, and optimization by
comparing the 20 highest scores achieved by homoge-
neous and heterogeneous network permutations with
respect to each performance metric. No significant dif-
ferences in mean propagation scores between top-per-
forming homogeneous and heterogeneous networks
were disclosed (unpaired t test, t(38) = 0.46, p = 0.647;
Fig. 4). We attributed this lack of differences to the
fact that network permutations in which the syna-
pses TRN1!TC2 and TRN2!TC3 were both maximally
weighted would be equally capable of supporting ro-
bust signal propagation, regardless of whether these
synapses were varied homogeneously or heterogene-
ously. By contrast, top-scoring heterogeneous network
variants better supported both oscillation (t(38) = 13.88,
p, 0.0001) and optimization (t(38) = 18.04, p, 0.0001)
than their homogeneous counterparts. Because net-
works supporting the propagation of oscillatory activity
would, by definition, score high with respect to optimi-
zation, these results not only confirmed that heteroge-
neous networks were more likely than homogeneous

Figure 3. Propagation and oscillation in heterogeneously varied synaptic networks (N=12,681). A, Network regression models illus-
trating how propagation (top) and oscillation (bottom) varied as a function of individual synaptic weights across simulated heteroge-
neously synaptic network permutations. Synapses with positive and negative normalized regressions coefficients were correlated
positively and negatively with a given property and are depicted separately in the left- and right-sided circuit diagrams, respectively,
for clarity. Gray synapses are either non-variable or associated with normalized regression coefficients with absolute values ,0.05.
See also Table 4. B, Representative simulations for two selected heterogeneous networks, whose normalized synaptic weights are
depicted in the circuit diagrams. Networks a‘ and b ‘ respectively illustrate propagation and propagation of oscillation across the
network.
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networks to accommodate this oscillatory mechanism,
but furthermore disclosed that propagation of oscilla-
tion across the thalamocortical network was associated
with higher oscillation scores than postinhibitory-driven
oscillation in TC3, the predominant form of oscillation
observed in homogeneous networks.

Discussion
The presented analysis suggests that open-loop TC-

TRN-TC synaptic motifs (Fig. 1B, right) can function as a
substrate for signal propagation across the thalamus, and
by extension, cortical networks without the need for direct
corticocortical, intrareticular or corticothalamic connec-
tivity. Postinhibitory rebound mediated by T-type Ca21

channels served as a mediator of both propagation and
oscillation in the simulated networks. TRN-TRN connec-
tions, either chemical or electrical (Fig. 1B, left and mid-
dle), diminished horizontal propagation by disrupting the
precise timing relationships required to propagate a signal
across the network. Models with heterogeneously varied

synapses outperformed those whose synapses varied as
a class with respect to the propagation of oscillatory ac-
tivity, consistent with the emerging literature documenting
cellular and synaptic heterogeneity in the TRN (Lee et al.,
2007; Halassa et al., 2014; Clemente-Perez et al., 2017).
These data suggest that widespread propagating tha-
lamic or thalamocortical activity, under both pathologic
and physiological conditions, may be mediated, at least in
part, by TC-TRN-TC connections. The model makes
strong predictions that can be tested physiologically.
Like most of the thalamic (Destexhe et al., 1993, 1996a;

Golomb et al., 1996; Bazhenov et al., 1998; Sohal and
Huguenard, 1998) and thalamocortical models (Destexhe
et al., 1998; Bazhenov et al., 2002; Rogala et al., 2013)
that inspired our model, we used single-compartment,
Hodgkin–Huxley neurons. While these model cells con-
tribute to the computational parsimony and practicality
of network models, particularly where the analysis of
network dynamics is prioritized, they neglect the intrin-
sic cable properties of real neurons and, relatedly, the

Table 4: Normalized linear and 2° regression coefficients for propagation and oscillation in heterogeneously varied synaptic
networks

Normalized regression coefficients in heterogeneously varied synaptic networks
Synaptic variable Propagation linear Propagation 2° Oscillation linear Oscillation 2°

TRN1-TRN3 - - 0.115 -
TRN3-TRN1 –0.088
TRN3-TRN2 –0.084 –0.073 - -
TRN1=TRN2 –0.051 –0.091 - -
TRN1=TRN3 –0.072 - - -
TRN2=TRN3 - –0.113 0.117 -
TRN1-TC1 –0.075 - 0.621 0.077
TRN1-TC2 0.608 0.571 –0.289 –1.000
TRN2-TC2 –0.128 –0.196 0.333 0.417
TRN2-TC3 1.000 1.000 –0.379 –0.892
TRN3-TC3 –0.207 –0.239 1.000 0.107
(TRN3-TRN2)

2 - 0.079 - -
(TRN1-TC2)

2 - –0.245 - 0.189
(TRN2-TC2)

2 - 0.174 - –0.093
(TRN2-TC3)

2 - –0.472 - 0.278
(TRN3-TC3)

2 - 0.187 - –0.146
TRN1-TRN2 � TRN1-TC2 - 0.070 - -
TRN1-TRN3 � TRN3-TC3 - - - 0.215
TRN2-TRN1 � TRN1=TRN2 - - - 0.111
TRN2-TRN1 � TRN1-TC1 - - - –0.186
TRN3-TRN1 � TRN1-TC1 - - - –0.172
TRN3-TRN1 � TRN1-TC2 - –0.119 - -
TRN3-TRN1 � TRN2-TC3 - –0.096 - -
TRN3-TRN2 � TRN2-TC3 - –0.153 - -
TRN1=TRN2 � TRN2-TC3 - - - –0.129
TRN1=TRN3 � TRN1-TC1 - - - –0.114
TRN1=TRN3 � TRN3-TC3 - –0.079 - -
TRN1-TC1 � TRN1-TC2 - - - 0.634
TRN1-TC1 � TRN2-TC3 - - - 0.449
TRN1-TC2 � TRN2-TC2 - –0.166 - 0.361
TRN1-TC2 � TRN2-TC3 - 0.753 - –0.274
TRN1-TC2 � TRN3-TC3 - –0.106 - 0.669
TRN2-TC2 � TRN2-TC3 - - - 0.345
TRN2-TC2 � TRN3-TC3 - - - –0.192
TRN2-TC3 � TRN3-TC3 - –0.124 - 0.399

The regressions include 1°, 2°, and interaction terms corresponding to the 14 variable synapses in the networks. Equal signs denote gap junctions. Linear regres-
sion for propagation, R2 = 0.742, RMSE=0.069, p,0.0001; 2° regression for propagation, R2 = 0.857, RMSE=0.051, p, 0.0001; linear regression for oscillation,
R2 = 0.253, RMSE=0.131, p, 0.0001; 2° regression for oscillation, R2 = 0.388, RMSE=0.118, p, 0.0001.
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spatially disparate nature of synaptic integration and
heterogeneous expression of intrinsic and synaptic
conductances (Dayan and Abbott, 2005; Herz et al.,
2006). Such considerations are particularly relevant
here relative to dendritic distributions of T- and H-cur-
rents in TC neurons (McCormick and Pape, 1990;
Destexhe et al., 1998; Williams and Stuart, 2000; Traub
et al., 2005) and TRN neurons (Contreras et al., 1993;
Destexhe et al., 1996b; Traub et al., 2005; Crandall et
al., 2010). Although multicompartment neuronal models
incorporating such details could conceivably alter the
network dynamics being studied, they were not neces-
sary to simulate the propagation of oscillatory waves
seen physiologically (Bal et al., 1995; Destexhe et al.,
1996a; Golomb et al., 1996; Bazhenov et al., 1998;
Sohal and Huguenard, 1998).
Additionally, the present model omitted explicit cortico-

thalamic and corticoreticular synapses, both of which have
been identified and physiologically characterized to varying
degrees (Steriade et al., 1972; White and Hersch, 1982; De
Curtis et al., 1989; Contreras et al., 1996; Blumenfeld and
McCormick, 2000; Zhang and Jones, 2004; Crandall et al.,
2015), although the former were effectively amalgamated
with both feedforward sensory and modulatory projections
to the thalamus in the form of the Poisson-modulated ex-
ternal input we delivered to individual TC neurons. Both
forms of feedback have been implicated in the spread of
spindle waves and in the maintenance of their synchroniza-
tion over large distance scales (on the order of the length of
the mammalian forebrain) and are furthermore known to
drive spindle wave formation and propagation in vivo by
polysynaptically recruiting TC neurons via TRN-medi-
ated postinhibitory rebound (Steriade et al., 1972; Roy et
al., 1984; Contreras et al., 1996; Contreras and Steriade,
1996; Suga and Ma, 2003; Sillito et al., 2006; Crandall et
al., 2015; Sorokin et al., 2017). It should be noted, how-
ever, that short-range propagation of spindle waves,
which can be elicited in isolated thalamic slice

preparations (Bal et al., 1995; Kim et al., 1995), is pre-
served following decortication, both in vivo and in silico
(Contreras et al., 1996; Contreras and Steriade, 1996;
Destexhe et al., 1998).
The signaling dynamics observed in our small-scale,

broadly feedforward model would undoubtedly be altered
by introducing corticothalamic and corticoreticular feed-
back, as well as corticocortical synapses: in particular, we
can predict, based on other modeling studies that have
systematically explored the contributions of such connec-
tions within fundamentally closed-loop thalamoreticular
frameworks (Destexhe et al., 1998; Rogala et al., 2013),
that cortical feedback to the dorsal thalamus and TRN
would increase the frequency of postinhibitory rebound in
relay cells of the former, while also increasing oscillatory
activity through the introduction of new recurrent path-
ways between the thalamus and cortex. While the en-
hancement of postinhibitory rebound in the thalamus
would a priori suggest an enhancement in the extent of
signal propagation mediated through open TC-TRN-TC
loops, our results demonstrate that the efficiency of such
propagation can be attenuated by decohering activity in-
troduced via intrareticular synapses: as such, whether
corticothalamic, corticoreticular, and corticocortical syn-
apses dynamics would ultimately enhance open-loop-
mediated propagation or decrement it by interfering with
the temporal dynamics underlying this form of intrathala-
mic signaling would heavily depend on, among other
things, the degree to which these additional synapses
spatially diverged within the dorsal thalamus and TRN.
Notwithstanding elaborations of cortical projections with-
in our network model, our present results suggest that
open-loop TC-TRN-TC architectures may mediate a
novel form of intrinsic thalamic, and by extension, corti-
cal signal propagation that exists independently of top-
down modulation (for example, in localized regions of
the thalamus where cortical innervation is sparse) and
potentially in parallel to the modes of thalamocortical

Figure 4. Heterogeneously varied synaptic architectures better supported propagation of oscillation. Propagation, as measured in
those network permutations scoring highest with respect to the property, was equally supported in networks where synaptic
weights varied independently of one another (heterogeneously; checkered) as in networks where synaptic strength varied homoge-
neously (black) by class (unpaired t test, t(38) = 0.46, p=0.647). By contrast, oscillation and optimization scores were significantly
higher in top-performing heterogeneous networks than their homogeneous counterparts (oscillation: t(38) = 13.88, p, 0.0001; opti-
mization: t(38) = 18.04, p, 0.0001). Each bar corresponds to a mean of the top 20 network propagation, oscillation, or optimization
scores within each synaptic architecture group; error bars indicate SEM; ppppp, 0.0001; N.S. = not significant.
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propagation in which both corticofugal pathways and
corticocortical synapses are known to participate.
Future efforts within our modeling paradigm stand to in-
corporate reciprocal cortical projections involving one or
multiple cortical layers (Destexhe et al., 1998; Bazhenov
et al., 2002; Traub et al., 2005; Izhikevich and Edelman,
2008; Rogala et al., 2013).

Comparison to related computational models and
physiological data
Although the production of spindle waves was not an

explicit objective of our study, some of the wave dynam-
ics arising in our networks were nevertheless consistent
with those inherent to spindle or spindle-like waves.
Despite possessing higher degrees of TC!TRN and
TRN!TC synaptic divergence and lacking the exclusively
open-loop TC-TRN-TC architecture characterizing a sub-
set of our network variants, other isolated thalamic models
allowing for longitudinal wave propagation similarly ac-
commodated this propagation along the lattice of intercon-
nected TC and TRN neurons by way of laterally inhibitory
TRN-TC synapses (Destexhe et al., 1996a; Golomb et al.,
1996; Bazhenov et al., 1998); at short ranges, this mecha-
nism of signal propagation also prevailed in larger-scale
thalamocortical models, while corticothalamic projections
acted to propagate activity to more distal sites (Destexhe
et al., 1998; Destexhe and Sejnowski, 2003). Comparably,
recurrently inhibitory TRN-TC synapses have been docu-
mented to play a vital role in the generation of oscillatory
behavior in the thalamus (von Krosigk et al., 1993;
Destexhe and Sejnowski, 2003). The temporal parameters
of propagating and oscillation signals in our model also
matched some of those previously reported: the mean sig-
nal propagation velocity and oscillation frequency meas-
ured across homogeneous networks fell within the ranges
of spindle wave propagation velocities and intraspindle
spike frequencies reported in both physiological and com-
putational spindle wave studies (Andersen and Andersson,
1968; Steriade and Deschenes, 1984; Kim et al., 1995;
Destexhe et al., 1996a; Golomb et al., 1996).
The TC neurons in our model network exhibited both

tonic and bursting modes of firing, consistent with exten-
sive physiological characterization (Sherman, 2001). The
form of signal propagation generated in our networks via
open-loop TC-TRN-TC synaptic pathways, which neces-
sarily depended on TRN-driven postinhibitory rebound in
the downstream TC neuron, could, in practice, be elicited
regardless of whether the upstream TC neuron fired toni-
cally or in bursts. However, bursting in thalamic neurons
receiving open-loop inhibition from the TRN is associated
with a greater fidelity of transmission to the cortex relative
to tonic firing, as was systematically demonstrated in the
computational model that directly inspired our present
study (Willis et al., 2015); this finding furthermore holds
relative to thalamocortical signaling efficiency more gen-
erally (Guido et al., 1995; Reinagel et al., 1999, Swadlow
and Gusev, 2001; Krahe and Gabbiani, 2004).
One particularly notable point of departure relative to

similar network models was the extent to which thalamor-
eticular, reticulothalamic, and thalamocortical synapses

diverged. Although all three classes of synapses are
known to diverge significantly and have been observed to
target neuronal somata hundreds of microns from their
origins (Jones, 1985; Cox et al., 1996, 1997; Crabtree,
1996; Pinault and Deschênes, 1998; Alonso et al., 2001;
Miller et al., 2001; Sherman and Guillery, 2001), the
TC-TRN, TRN-TC, and TC-Co synapses in our model
were constrained to remain strictly local and minimally di-
vergent (or non-divergent, in the case of TC-TRN and TC-
Co synapses). With respect to the first two classes
of synapses, this constraint was imposed to probe the
impact the disynaptic TC-TRN-TC open-loop motifs
characterizing a subset of network permutations, which
constituted one of the foci of our study, and analyze the
signal propagation they may support. This neuroanatom-
ical scheme contrasted with previous computational
models featuring parallel, interconnected thalamoreticu-
lar pathways, in which both TC and TRN synapsed bidir-
ectionally with several neighboring TRN and TC cells,
respectively, within a radius of several hundred microns
(Destexhe et al., 1996a, 1998; Golomb et al., 1996;
Bazhenov et al., 1998; Sohal and Huguenard, 1998;
Sohal et al., 2000; Traub et al., 2005; Izhikevich and
Edelman, 2008). Furthermore, the limited synaptic diver-
gence constrained the spatial and temporal scales over
which propagating and oscillating signals persisted in
our model. This does not necessarily imply that thalamic
and/or cortical signal propagation mediated through
open-loop TC-TRN-TC architectures would be inherently
limited in either distance or duration, particularly when
accounting for the comparative diversity and complexity
in the spatial and temporal profiles of real sensory infor-
mation integrated by the thalamus relative to the highly
focal, time-fixed external stimulus approximations we
employed to initialize responses reliably across simula-
tions in our model networks, consistent with similarly
simplified stimulus representations used in other tha-
lamic or thalamocortical models (Destexhe et al., 1996a;
Golomb et al., 1996; Bazhenov et al., 1998; Sohal and
Huguenard, 1998; Traub et al., 2005). In light of the limits
on the spatiotemporal coherence of signals intrinsic to
our present model, however, we would not predict any
qualitative changes in propagative or oscillatory dynam-
ics were we to increase the length of our baseline net-
work as presently constituted by adding in parallel
additional TC, TRN, and Co neurons.

The functional implications of open-loop TC-TRN-TC
synaptic motifs
The spread of activity from one cortical region to an-

other is a foundational concept at the core of our under-
standing of sensory processing, higher-order cognitive
functions such as attention and language, sleep-related
oscillatory phenomena, and pathologic findings such as
propagation of ictal discharges and migraine. It has long
been speculated that the TRN could serve as a control
point for large-scale cortical signal processing given its
central location, the high degree of convergence of pro-
jections involved in attention, arousal, and emotion onto
the TRN, and the TRN’s particularly strong control over
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TC firing properties (Yingling and Skinner, 1976; Crick,
1984; Guillery et al., 1998; Brunia and Van Boxtel, 2001;
McAlonan et al., 2006; John et al., 2013). Here, we
showed that open-loop TC-TRN-TC architectures can
support at least short-range thalamocortical signal prop-
agation. Within the thalamus, these configurations have
thus far been observed both within and across individual
thalamic nuclei and are thought to serve as pathways for
intra- and cross-modal modulation, respectively (Crabtree
et al., 1998; Pinault and Deschênes, 1998; Crabtree and
Isaac, 2002; Lam and Sherman, 2005, 2015; Kimura et al.,
2007; Lee et al., 2010; Kimura, 2014); as has been previ-
ously surmised, these synaptic pathways could also
plausibly lend themselves to sensory enhancement, multi-
sensory integration, and attentional mechanisms (Crabtree
and Isaac, 2002; Pinault, 2004; Willis et al., 2015; Crabtree,
2018). At a minimum, and as inferred from physiological
studies, open-loop pathways should be fully capable of
supporting signaling propagation from one thalamic relay
neuron to another through a limited number of intervening
synapses (with a disynaptic pathway serving as the short-
est such configuration).
It should be emphasized that the specific functional

roles of open-loop TC-TRN-TC pathways are likely to de-
pend on their densities and distributions within the thala-
mus (Halassa and Acsády, 2016). If the morphologic,
intrinsic, and synaptic heterogeneity of TRN neurons are
any indication (Scheibel and Scheibel, 1966; Jones, 1975;
Spreafico et al., 1991; Cox et al., 1996; Lee et al., 2007;
Halassa et al., 2014; Clemente-Perez et al., 2017), it is
reasonable to assume that both TC-TRN and TRN-TC
synapses are distributed in a broadly heterogeneous
manner across the thalamus. As underscored by our
analysis, such synaptic heterogeneity is seemingly a pre-
requisite for the propagation of oscillatory signals,
which, in the case of spindling, can occur in the thalamus
independently of cortical involvement (von Krosigk et al.,
1993; Bal et al., 1995; Kim et al., 1995) and necessarily
involves both recurrently and laterally projecting TRN-TC
synapses, the latter of which form of the basis of open
loops; outside of this particular functional context, syn-
aptic heterogeneity is broadly speculated to improve the
versatility, efficiency, speed, and metabolic economy as-
sociated with signal processing (Lengler et al., 2013). If
open-loop TC-TRN-TC architectures are indeed to be
found within a larger, synaptically diverse thalamoreticu-
lar milieu, characterized by variable synaptic divergence
and differing densities of sensory, cortical, and other ex-
trinsic innervation, it is moreover reasonable to expect
that the degree to which the mode of propagation medi-
ated by these synaptic motifs prevails would vary across
thalamic and cortical regions.
To what extent might the functionality of open loops

between the dorsal thalamus and TRN depend on
arousal state? While sleep and other depressed states
of consciousness (e.g., those pharmacologically in-
duced) are associated with thalamic hyperpolarization and
therefore tend to amplify both postinhibitory rebound,
which underlay the signal propagation in our model, and,
by extension, low-threshold bursting (Steriade et al., 1993;

McCormick and Bal, 1997; Weyand et al., 2001; Urbain et
al., 2019), both phenomena have also been documented in
the thalamic relay neurons of awake animals (Guido and
Weyand, 1995; Fanselow et al., 2001; Ortun~o et al., 2014),
and then sometimes selectively in response to particular
stimuli (Lesica and Stanley, 2004; Wang et al., 2007). Thus,
while there is no mechanistic basis on which to assume
that propagation through open TC-TRN-TC loops would
be restricted to a particular state of wakefulness, the
widespread modulatory afferents received by both the
thalamus and TRN from brain areas including the prefron-
tal cortex, basal forebrain, amygdala, and brainstem leave
little doubt that any form of intrathalamic or cortical sig-
naling supported by these synaptic architectures would
be highly state-dependent (Halassa et al., 2014). Both
forthcoming physiological investigation and future model-
ing studies will be able to evaluate such predictions and
help provide a full accounting of the role of the various
modes of connectivity between brain regions.
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